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Abstract

Mapping systems with novel view synthesis (NVS) capabilities are widely used in computer
vision, with applications in augmented reality, robotics, and autonomous driving. Most notably,
3D Gaussian Splatting -based systems show high NVS performance; however, many current
approaches are limited to static scenes. Although recent work started addressing short-term
dynamics (motion within view of the camera), long-term dynamics (the scene evolving through
changes out of view) remain less explored. To overcome this limitation, we introduce a dynamic
scene adaptation mechanism that continuously updates the 3D representation to reflect the
latest changes. In addition, since maintaining geometric and semantic consistency remains
challenging due to stale observations disrupting the reconstruction process, we propose a novel
keyframe management mechanism that discards outdated observations while preserving as much
information as possible. We evaluated Gaussian Mapping for Evolving Scenes (GaME) on
synthetic and real-world datasets and found it more accurate than the state of the art.



Chapter 1

Introduction

1.1 Challenges in Mapping Evolving Environments

Visual mapping enables a machine to build a 3D representation of its surroundings based on
its camera input. Over the years, visual mapping systems have advanced |26, 19], learning to
handle complex scenes with increasing accuracy. For these systems to move safely and make
decisions, they need a reliable understanding of their surroundings. This capability forms the
backbone for various systems from self-driving cars to virtual reality glasses, where spatial
understanding is crucial for navigation, planning, and interaction. Imagine a delivery robot

Figure 1.1: Examples of realistic long-term changes of a scene in the Flat dataset [29]. (left)
Room before changes. (middle) Room after changes. (right) Highlighted scene changes. Colors
indicate changes, red is removed, green is added and blue changed.

that delivers packages to an office. Over months, it is very common that the environment will
change significantly. Furniture will be moved, new decorations will be added, older objects will
be discarded. To have a tangible example, of how human environments change, think about the
changes in the composition and content of your desk in the last month. To be able to react
to those changes, it is essential that the mapping system is able to cope with these changes.
Current systems for mapping environments do not model this and would either fail completely
or require and entire remapping of the environment, which can be costly and time intensive.

1.2 NYVS capable mapping systems

Recent mapping systems have been enhanced with novel view synthesis (NVS) capabilities [19, 11],
allowing them to generate realistic, immersive views of scenes. This allows more detailed scene



arbitrary many frames
—>.

Figure 1.2: Examples of long-term and short-term changes. (top) example from Flat dataset [29].
As an example, the chairs have moved and are seen in a different position after being out of
the cameras view for an arbitrary amount of time. (right) Example from TUM-rgbd dynamic
dataset [30]. A person is moving continuously, while being observed by the camera.

exploration and supports the creation of high-quality virtual environments. An application for
this might be augmented reality. If virtual objects were to interact with the real environment,
this would require a map which is consistent with the current state of the surroundings. In this
context, it is desirable, that virtual objects are able to adapt interaction with the real world,
just as real objects would.

1.3 Categories of changes in the environment

These NVS-capable approaches typically assume that the scene is static such that optimization
over multiple frames is well conditioned. However, real-world environments are rarely static,
but include both short- and long-term dynamics as seen in figure Fig. 1.2.

e short-term dynamic effects are things moving within view of the camera. This is usually
any recorded movement or interaction with the scene. Examples could range from an
object falling over or a human interacting with the environment by just occluding the
scene partially or moving objects.

e Jong-term dynamics describe the scene evolving through changes happening outside the
view of the camera Fig. 1.1. This can be the result of any change that occurs, even while
not recording, such as reorganizing furniture in a room or leaving a coffee mug on a desk.

1.4 Limitations of current methods

While some of the most recent NVS approaches address short-term dynamic objects [41, 35],
long-term changes remain less explored. As a result, modern reconstruction methods with NVS
capabilities struggle to capture changes as the scene evolves over time, preventing them from



Figure 1.3: Example of a partially observed change. First a bed is first fully modeled in
another room (left). After a while, the place, in which it was visible, is observed by the camera
(middle). Without observing the second room after the change it is clear that the bed is fully
removed, rather than just partially missing from where it was before (right).

being deployed in long-term reconstruction pipelines. There are several issues that are not
addressed.

1.4.1 Time consistency

During long-term mapping, systems must continuously update the 3D representation to capture
the scene’s evolution and maintain reliable operation. This is especially challenging compared
to classical multi-session mapping as changes can occur at any time during data collection.
Considering this, the importance of addressing this problem becomes clear. Making sure a
scene that is to be captured is static for the entire duration of capturing the data is beyond
impractical in many cases. In addition to this, some use cases possibly require adapting to
changes. A concrete example of this could be a digital twin of an art gallery. While it would
be possible to keep it updated by recreating it every time a change occurs, just capturing and

updating regions with changes with a smooth integration in an existing reconstruction would be
helpful.

1.4.2 Partial observability

Objects usually don’t Partially change. While current systems don’t handle this, it is an intuitive
concept for a human observer. Seeing a changed object partially, makes it possible to infer
details about the rest of the scene without actually observing it. For instance, a bed in another
room is removed, but this is only partially observed through a door. As illustrated in Fig. 1.3, it
can be semantically inferred that the other part of the bed, without observing that area, must
also be gone.

1.4.3 Optimization conflicts

In a long-term dynamic setting, it can occur to first observe an area with an object present and
later to observe the same area without it. If such an anomaly is saved in keyframes without
further precautions, the optimization becomes corrupted with conflicting data. Recently, initial
methods have started to address these challenges. A first approach is presented in Panoptic
Multi-TSDFs [29], building semantically consistent submaps and reasoning about changes on
the level of submaps. The following works [6, 24, 28] similarly focus on object-level mapping to
handle evolving scenes. However, all these methods rely on map representations that cannot
easily be re-rendered, preventing their use in AR/VR or digital maps where realistic rendering is
essential. Having a system capable to continuously map an environment and model the changes



Figure 1.4: Illustration of optimization conflict. Training image of the scene at evaluation
(left). Rendered image of the scene at evaluation (right). As seen, the reconstruction can get
corrupted if frames are used, in which objects are both present and not present at the same
time.

without having degenerated maps caused by older and newer observations conflicting, while
being capable of photorealistic NVS-synthesis, is the goal addressed in this work.

1.5 Our Approach: Gaussian Mapping for Evolving Scenes

This work addresses the challenge of long-term NVS mapping using 3D Gaussian Splatting
(3DGS) in evolving scenes. The key insight of our approach is that environment changes are not
random, but typically follow semantically consistent patterns. We therefore integrate semantic
consistency with the inherent properties of 3DGS to efficiently detect and adapt to environment
changes in the incrementally built 3DGS model. As multi-view optimization is essential for
accurate 3DGS mapping, we introduce a keyframe management method that appropriately masks
stale areas in keyframes to retain useful information while accounting for changes, resulting in a
well-conditioned 3DGS optimization process even in evolving scenes. We make the following
contributions:

e We present GaME, the first NVS-capable mapping system for long-term evolving scenes.
e A Dynamic Scene Adaptation (DSA) mechanism to incrementally update a 3DGS model.
e An efficient keyframe management strategy for accurate 3D reconstruction through changes.

e We thoroughly evaluate GaME on synthetic and real-world data, showing a performance
increase of 90-+% in depth and 20+% in color rendering. We release the code open-source’.

!Released upon acceptance for anonymous review.



Chapter 2

Related work

2.1 3D Change Detection

The goal of change detection is to handle long-term dynamic effects, i.e. changes to the scene
occurring outside in the view of the sensor. Typically, this is addressed in a multi-session
setting. Most importantly, once a map for each session is constructed, changes can be identified
through geometric scene differencing. For example, Meta-rooms [1] proposed a method which
operates on subsequently recorded point clouds of the same room. A clustering approach is
used to associate points with groups that represent changing objects in the scene. Based on
this, objects are added and removed. However, this method is limited to point clouds and is
focused on single-room settings only. An approach using TSDF’s is introduced by Fehr et al.
[5]. Here, similarly to [1], for each session, the current reconstruction of the scene is aligned
and then globally compared with the new observation, to iteratively model the changes. The
LiSTA and LT-mapper methods [13, 27| also frame the problem as a multisession SLAM rather
than a unified input that tracks changes over time. To achieve an understanding of object-level
change, this has been extended using semantic information [14], where recent trends focus on
the extraction of more specialized object features, including learned shape descriptors [31, 8, 27|,
neural object representations |6, 42|, and language embeddings [25|. Most related to us, Schmid

/ Multi-session \ / Online \

Continuous data Stream
Session 1
:l—» Align & compare T | T2 | ... | Ty = Adapt
Session 2 l l
Change Detection Real-time Update

- RN

Figure 2.1: Comparison between the multi-session and online setting. Multi-session
requires discrete captures, which are each constrained to be static. Offline processing is used to
determine the changes, while the online approach continuously adapts to changes without the
need for information about when to expect change.

et al.[17] recently presented a 3D Gaussian Splatting-based [12] approach by re-rendering the
scene to newly collected views and using EfficientSAM [34] for 2D change detection. However,
the assumption that the scene is static during each session and the offline processing is highly



limiting, as changes in human-centric and evolving scenes can occur at any time during the
mapping process. In contrast, our mapping is designed to operate online and does not impose
any limitations on scene changes.

2.2 Online Long-Term Reconstruction.

Recently, initial methods have started to address this more general online problem. A first
approach is presented by Schmid et al.[29], which generates locally and semantically consistent
submaps and incrementally reasons about changes on the submap level.

Fu et al.[6] propose neural object descriptors to build an object-level pose graph and detect
changes in the graph configuration. This has recently been extended with SFE(3)-equivariant
descriptors [7]. Qian et al.[24] presents a frame-to-map-tracking approach, using a probabilistic
update rule to detect changes at the object level, which is further extended to a variational factor-
graph approach in [23]. A unified formulation of short- and long-term dynamic reconstruction
is presented in Khronos 28], where objects are reconstructed locally and changes are verified
using a library of rays. Nonetheless, these methods rely on map representations that cannot
easily be re-rendered. In contrast, GaME provides scene reconstruction capable of real-time
color and depth rendering.

2.3 Dynamic Gaussian Splatting

3D Gaussian Splatting [12] has revolutionized novel view synthesis (NVS) by enabling photore-
alistic, real-time rendering at over 100 FPS. Compared to neural radiance fields [20], 3DGS is
significantly more memory-efficient and faster to optimize. The problem of dynamic or 4D GS
has attracted wide interest. A series of works [3, 18, 33, 38] optimize a canonical set of Gaussians
from the initial frame and model temporal variations through a deformation field. However, these
methods are limited to short video sequences, as they cannot introduce new Gaussians after the
initial frame. Another class of approaches [4, 10, 37| directly models temporal Gaussians that
can exist over subsets of frames. Despite their improved flexibility, these methods require offline
optimization and multi-view input, making scalability a significant bottleneck for high-quality
dynamic reconstruction. In contrast, our mapping operates online using only a single RGB-D
camera.

2.4 Online Gaussian Mapping

Most related to us, 3D Gaussian Splatting has sparked a wave of online RGB-D mapping
methods. There are methods which solely assume static scenes and also methods which already
start to model change.

2.4.1 Static Methods

MonoGS [19] applies Gaussian Splatting for the first time in the monocular SLAM setting, while
it’s also possible to use RGB-D data if available. In contrast to the original 3DGS algorithm,
this approach achieves tracking by directly optimizing on the 3D Gaussians, instead of relying
on an external SfM solution for poses. Splatam [11] is another solution for SLAM, only for
RGB-D data. Similarly it employs 3DGS and utilizes the explicit nature of the Gaussians and
directly optimizes tracking on the gaussians. However, it is limited by blurry or fast-paced input
sequences. Photo-SLAM [9] uses hyper primitives based on geometric features, while also using
the explicit component of those for tracking. Two more variants of using Gaussian Splatting



Method Input type  short-term change long-term change

MonoGS RGB / RGB-D X X
SplaTAM RGB-D X X
Photo-SLAM RGB-D X X
GS-SLAM RGB-D X X
G-SLAM RGB-D X X
Wildgs-slam RGB-D X
DG-SLAM RGB-D X

Table 2.1: Table of related methods with similar input, mostly using explicit representations
such as Gaussian splatting. Only a small number addressed short-term changes, while all of
them completely neglect long-term change

are GS-SLAM and G-SLAM]36, 39]. G-SLAM for example, introduces an new efficient seeding
strategy and divides the map into sub-maps. What these methods all have in common is that
almost all adopt 3D Gaussians as their primary scene representation. The common denominator
is that the map is based on geometrically explicit models, which is also an essential property
used for GaME. While these methods perform well in static environments, they struggle in
dynamic environments.

2.4.2 Dynamic Methods

More recent approaches DG-SLAM and Wildgs-slam|35, 41] tackle short-term dynamics within
the camera’s view such as people or small moving elements. DG-SLAM uses both semantic
segmentation models and analysis of the residual depth of adjacent frames. The changes modeled
by DG-SLAM are exclusively inside the view of the camera. Based on this assumption, the
depth maps of frames in a sliding window are reprojected to the same frame. When comparing
the reprojected depth maps from the same view, the residuals from the inconsistent depth
highlight which regions are a dynamic part of the scene. This is then combined with semantic
masks, to infer full semantic objects that are moving. For example, a person might move
only the arms, but not legs or torso, but will be detected as dynamic by combining the depth
and semantic information. Wildgs-slam defines the dynamic parts of the scene as distractors
and addresses the problem of ignoring these during training. To identify which parts of the
input stream are likely distractors, a DINOv2 feature extractor, which has been fine-tuned to
be 3D aware is used to get a feature map per frame. The feature maps are fed into a MLP,
which predicts an uncertainty map. The MLP for uncertainty maps is trained with their newly
proposed Uncertainty Loss Function, which is also used for the mapping optimization. The idea
of keeping a map with information about scene changes for each frame is also similar to what
GaME used to manage older observations. Those two examples above show how it is plausible
to use another pre-trained model to infuse a change detection system with semantics. However,
all prior works remain limited in addressing long-term scene changes, as stale observations from
outside the camera view corrupt the optimization process. In contrast, GaME is designed to
robustly handle evolving environments by filtering outdated information and maintaining high
rendering quality throughout reconstruction.

2.4.3 Goal of this work

Recent work has had good progress with addressing dynamic scene changes. However, they
still have fundamental limitations, that hinder them to be deployed in real-world evolving



environments. More traditional methods used to cope with 3D changes used an multi-session
approach, which is impractical for real-world deployment, where the scene can unpredictably
change at any time. Online methods using Gaussian Splatting have strongly contributed to
making mapping systems faster and better in photorealistic novel view synthesis. Only recently
such approaches started to be robust regarding short-term changes only. Although first steps
have been taken to solve the problem of long-term changes, there hasn’t been an approach which
combines the fast NVS capabilities with the ability to detect and deal with long-term changes.
Our work GaME, will adress this gap exactly.



Chapter 3

Background

3.1 Background: 3D Gaussian Splatting

To make a change-robust mapping system one needs to choose the right map-representation. As
discussed before, we need a scene representation that is easily manipulated and quick to render.
As we choose to base our mapping system on 3D Gaussians, it’s details are introduced in the
following.

3.1.1 Introduction and Core Ideas

3D Gaussian splatting (3DGS) [12] is an effective method for representing 3D scenes with
novel-view synthesis capability. This approach is notable for its speed, without compromising
the rendering quality. 3DGS represents the scene as a collection of gaussian distributions
rather than discrete points. Since some visual effects, such as reflections, have view-dependent
properties, the color of a Gaussian is not just represented by an RGB value. The colors are
represented as Spherical harmonics, which are a set of basis functions, which are defined on
the surface of a sphere so that it is possible to model things such as specular highlights or
directional shading. To render a view from this explicit model, 3D Gaussians are "splatted"
by approximating a projection of them on the 2D image plane, to be then composed into an image.

3.1.2 The 3D Gaussian Representation

Gaussian Splatting explicitly represents a scene as a collection of 3D Gaussians. Each Gaussian
is parameterized by mean p € R3, covariance ¥ € R3**3, opacity o € R, and RGB color C' € R?.
With this representation, the Gaussian is fully defined in a 3D space. The mean is the position
of each Gaussian, while the covariance matrix can fully describe the shape and orientation of a
3D Gaussian. How much each point p in a 3D space is influenced by this Gaussian is described
by

1

f(p) =0c(o) - exp (—é(p—u)ﬁ‘l(p—u))y (3.1)

Since X is a covariance matrix, it can be decomposed as ¥ = RT DR, where R € SO(3) and
D = diag(d), with d € R? being a positive diagonal matrix. Thus, the inverse is

Y !'=R'D'R (3.2)

Intuitively, in Eq. (3.1) it is evaluated, how far the vector p is from p, measured in squared
Mahalanobis distance
d*(x) = (x — )2z — p). (3-3)
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The distance is Euclidean, but squared and inversely scaled along each of the ¥’s eigenvectors,
or principal components, by the respective eigenvalues. This value is then scaled by a factor of
—%, the exponential function, and multiplied by an opacity factor. For example, this makes
points exactly at p have the activation of the Gaussians opacity o. The further it is placed from
1, the lower it will get. Because of the defined metric, this decay is relative to the amount of
variance along the direction in which the point is moving away.

3.1.3 Spherical Harmonics for view-dependent Color

To faithfully represent a 3D Gaussian scene, it would not be enough to define an RGB-value
for each Gaussian. There are several situations, such as specular highlights or directional
shading, representing shiny surfaces or more complex materials, in which something wouldn’t be
accurately represented. Spherical harmonics are a set of functions defined on S?, the surface of
the unit sphere. One such function is defined for each of the color channels. For each channel the
set of functions is summed up to approximate the desired view-dependent color. The concept is
essentially comparable to a Fourier series approximation, just defined for a function on the S?
sphere.

3.1.4 Splatting 3D Gaussians to 2D

Exactly projecting Gaussians to 2D, results in them not being Gaussians in the 2D image plane
anymore. 3DGS addresses this issue with an approximation of the projected distribution in image
space as a 2D Gaussian. This efficient alternative to calculating the nonlinear transformation of
the original 3D distribution, is precisely the "Splatting" in Gaussian splatting. To splat a 3D
Gaussian to image space, the mean usp € R3 is projected to the corresponding pop € R? in
image space and a covariance matrix %/ € R? for a 2D Gaussian in image space is approximated
to represent what the 3D Gaussian with ¥ € R? would look like in image space. The projection
of the mean into image space is given by the equation

M2D = 7T(P<Tu)cﬂ:/3D))- (3'4>

The projection of psp is done by first converting it to its homogeneous counterpart p},. With
this, the given camera position is reversed with the world to camera transform T,,. € SE(3).
Now, since the mean is in camera space (sometimes called view space), it is projected into clip
space with the intrinsics matrix P € R***. Usually, points are filtered out at this moment of
the rendering pipeline, if they are not in the view of the camera. After the visibility filtering,
the homogenous coordinate can be transformed back into the Cartesian format and the and z
component can be discarded with 7 : R* — R? given by

) ) (3.5)

resulting in the final 2D image coordinate. Instead of doing the full projection, the resulting
distribution of the 2D projection of the 3D Gaussian is approximated using a first-order Taylor
expansion of the projection’s Jacobian around its mean. This results in an elliptical 2D
approximation of the projection. The 2D covariance X! of a splatted Gaussian is given by

SR

)
g v e 8
Il
N

S = JSamd,), = JuRuweS Ry T (3.6)

we 1
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where ¥, is the covariance of the 3D Gaussian rotated into camera orientation by the rotation
component R,. € SO(3) of the Ty, in Eq. (3.4). J € R**3 is a linearization of the Jacobian at
1 of the non-linear part 7 of the projection from camera space to image space, making it most
accurate around the mean of the Gaussian. This is described to be a good choice for balance of
computational demand and quality in a similar preceding approach called Surface Splatting [43].

3.1.5 Composition of color and depth with Alpha-Blending

In NeRFs, for each pixel samples along a ray are taken and composed. This is also possible
with the Gaussian representation, but would be highly inefficient, since for each pixel and
each sample, each gaussian would have to be sampled for calculating the image. 3DGS sorts
the Splatted gaussians according to depth and then samples in screen space per pixel using
Alpha-Blending. The color C' for one channel ch at a pixel i is influenced by m depth-ordered
Gaussians and rendered as:

Ch=> " C o [J(1 = ), (3.7)

js<m k<j
with alpha «; defined as
a; = 0y - eXp(_Oj), and (38)
1 _
oj = éA]szf. AV (3.9)

where A; € R? is the offset between the pixel coordinates and the 2D mean of a splatted
Gaussian. To render a depth image, the depths of the gaussians are similarly composed to get a
alpha-weighted average of the contributing gaussians per pixel.

Di=> z-a;- [J(1 - ), (3.10)

j<m k<j

where z; is the camera-space depth of the mean of the j-th Gaussian. The transmittance term
[11<;(1 — ) ensures that contributions are weighted by how much visibility remains after
accounting for closer Gaussians. This formulation mirrors the color composition in Eq. (3.7),
making it consistent with the rendered color.

3.1.6 Optimization of 3D Gaussian Parameters

In the paper from kerbl [12] the gaussians are initialized from SfM points and further optimized
via gradient optimization. The parameters of the 3D Gaussians are iteratively optimized by
minimizing the photometric loss between the rendered and training images, which is given by

LPhoto — Z ||C;endered . Cigrount truth| |2' (311)
i

During optimization, C' is encoded with spherical harmonics SH € R to account for direction-
based color variations. Covariance is decomposed as ¥ = RSSTR”| where R € SE(3) and
S = diag(s) € R3*3 are rotation and scale, respectively. This factorization for S is chosen to
preserve the positive semi-definite property of the covariance during gradient-based optimization.
While there is no specific regularization terms in the paper from kerbl [12], there is the method
of densification and pruning, to manage more and less detailed gaussians. When Gaussians
become too unexpressive, e.g. either too big or too small for a certain detail, they get split
and copied, densifying the scene. If an area has more gaussians than it needs, then individual
individual ones contribute too little to the scene, they get pruned away. An overview can be
seen in Fig. 4.1.

11
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Figure 3.1: Overview of the gaussian splatting pipeline. From Kerbl et al. [12]

Mip-NeRF360 (0.071 fps) Ours (135 fps) Ours (93 fps)
Train: 48h, PSNR: 24.3 Train: 6min, PSNR: 23.6 Train: 5Tmin, PSNR: 25.2

Ground Truth

Figure 3.2: Comparison with NeRF method Mip-NeRF360 and Gaussian splatting
(named Ours). While the qualitative differences are not too significant, the discrepancy in
rendering and training speed are immense. Illustration taken from 3DGS paper [12].

3.1.7 Comparison with and Advantages over Other Novel-View Syn-
thesis Methods

The advantages of choosing Gaussians Splatting as a scene representation has advantages for
training time, inference time (renderings NVS) and practical aspects of the explicit nature.
Other learned scene representations, like NeRFs take up more time in general. Having an explicit
representation, no ray marching sampling and the approximation of splats, make it fast and
efficient for training. Due to its rapid sampling speed, the rendering and training of Gaussian
splatting much more suitable for Slam methods compared to other neural methods. Specifically,
a NeRF needs to be trained for a significantly longer time for the same performance as a 3DGS
model as seen in Fig. 3.2. Another advantage of having the explicit representation is the ability
of fine grained editing of the model. While some gaussians still are ambiguously conected to
multiple objects, compared to a TSDF or NeRF this provides an important flexibility for editing.
Combining both the performane in speed and explicit representation is the key to our method
GaME.

12



Chapter 4
Method

GaME builds and maintains a 3D map capable of novel view synthesis of an evolving environment,
i.e. one where changes can occur during scanning but outside the view of the sensor at any time.
An overview of our system is shown in Fig. 4.1. GaME processes depth and color images from an
RGB-D sensor, using camera poses and panoptic segmentation from external estimators [2, 15].
For each keyframe, GaME triggers the Dynamic Scene Adaptation (DSA) module to incorporate
new geometry and update stale regions. Simultaneously, the keyframe management system
updates the state of the participating keyframes to ensure consistent multi-view optimization
despite scene changes.

4.1 Online Mapping Framework

4.1.1 One global map instead of submaps

We model our map as a set of 3D Gaussians {G;}Y,. The goal is to create a map with
object-level semantic consistency [29]. Intuitively, this reflects the prior knowledge that objects
tend to move as a whole, even under partial observations of changed objects. Modeling objects
organized in submaps is possible, but has several problems. To do this successfully, one would

(Sec 4.3) (Sec 4.2) (Sec 4.1)

Keyframe
Management

Dynamic Scene Adaptation
red = conflict area

Stream

Add new 3D Gaussians Update

. | : .
- ﬂ.r 4

Is KF?

Co-visibility Check

Keyframe Masking
black = ignored area

Remove stale 3D Gaussians

Selected Masked Keyframes

0

Figure 4.1: GaME Architecture. Given a segmented RGB-D input stream, the keyframe
management system selects keyframes and triggers the dynamic scene adaptation (DSA) module.
DSA first integrates newly observed geometry, then removes outdated geometry using covisible
keyframes from the 3D Gaussian Splatting map. The keyframe manager then masks stale
regions, and the mapping system uses the processed keyframes for local covisibility window
optimization.
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Figure 4.2: Example of sequentially inconsistent 2D panoptic segmentations. Sequential
consistency is not guranteed and thus not reliable for state of the art models. Example taken
from work of Li et al. [16].

need accurate panoptic segmentations, which are also consistent over frames. In practice, using
state of the art models such as [15] is very challenging. Several factors make this paradigm
of globally mapping every object as a separate submap impractial. First and most notable,
the semantic or panoptic labels are ambiguous and are almost guranteed to change in practice.
While it is not impossible to address this issue by tracking segmentation masks by a simple
Intersection over Union algorithm, this would only be stable if not the labels but at least the
masked areas of objects would be consistent over frames. This is not generally the case. There
are many such cases, where an object is in frame, but not segmented at all. This happens when
the object is on the side or further away from the camera, which almost always will happen
in any environment when moving around. This is a common problem that is also discussed
in other current research, where these segmentation models are utilized [16]. An example of
such inconsistent segmentation can be seen in Fig. 4.2. Directly extracting object-level submaps
is challenging, as noisy observations can lead to many unnecessary object allocation and de-
allocation operations [29]. This problem is exacerbated for 3DGS, where optimizing individual
object clouds is difficult since the splatting mechanism (3.7) inherently correlates all Gaussians.
To work around these limitations, we propose to build a singular 3DGS representation and
extract objects on an ‘as needed’ basis during Dynamic Scene Adaptation (Sec. 4.2).

4.1.2 Loss Functions

During online mapping, we optimize the 3DGS parameters of the scene using a set of covisible
keyframes for supervision, minimizing the loss:

L = )\color : Lcolor(fa ]) + /\depth : Ldepth(Da D), (41>
where [ is the original image, I is the rendered image, D and D are the measured and
reconstructed depth maps, and Acolor; Adepth € R> are loss weights. The color loss and depth

losses are defined as:

Leoor(1,1) = ZHI p)|| +A(1 —SSIM(I, 1)), (4.2)
Laeptn(D, D) Z 1D (p) ), (4.3)

where K is the number of rendered pixels in the rendered image or depth map, p € Z? denotes
the pixel coordinates, and SSTM is a structure similarity loss [32].
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4.2 Dynamic Scene Adaptation

GaME addresses three potential scenarios: the addition, movement, or removal of an object.
Note that movement can be decomposed into a removal, tracking, and re-addition step. While
GaME can be readily combined with object re-localization techniques [31, 7, 27|, tracking does
not affect NVS and the problem can thus be simplified into two core operations: Add and
Remowe.

4.2.1 Add operation

In contrast to adding 3DGS in static scenes, in evolving scenes, it is essential to distinguish
between adding new geometry for areas that were previously unseen and for objects that have
newly appeared. We identify under-reconstructed regions by low Gaussian opacity and high
re-rendering depth loss. Formally, the regions R uobserved Where new Gaussians are added are
given by:

Runobserved = {p € Z2 : Ldepth(p> > edepth A a(p) < eopacity}y (44>

where Lgepn(p) denotes the re-rendering depth loss at pixel p € Z?, a(p) represents rendered
opacity, and Ogqeptn € R, and Ogpacity € R are the respective thresholds. The method lifts the
input RGB-D frame in Rynobservea t0 3D and uses the resulting points to initialize the means for
new Gaussians.

DSA further determines which parts of the input correspond to newly added objects, where
regions of high opacity but with an input depth significantly smaller than the rendered depth
indicate previously reconstructed areas occluded by newly added geometry. Formally, the set of
Gaussians that might need adaptation is defined as:

g = {Gz : a(p) Z Qopacity A D(p) > D(p) + Edepth}7 (45>

where €geptn € R accounts for depth measurement noise and ensures robustness against Gaussians
still converging to their final values. To enforce semantic consistency, GaME then examines
each object mask of the current frame. If a sufficient portion of the mask overlaps with the
rendering of G, it marks the corresponding Gaussians from G as needing adaptation:

|mask(p) Nrender(G)] }
> emask )
jmask(p)|

Gadd = {Gi €g: (4.6)
where mask(p) denotes the binary mask indicating the presence of the object at pixel p, and
Omask € R is the overlap threshold. This further increases robustness against noisy measurements
to avoid allocating spurious Gaussians or ‘floaters’.

4.2.2 Remove operation

Similarly, DSA identifies objects that have disappeared from the scene. Specifically, changed
parts of the model can be identified as areas where the opacity is high (the model is well
reconstructed), but the model disagrees (visually or geometrically) with the measurements:

gremove = {Gz : Oé(p) > eopacity A Lcolor(jy I) > ecolor A ﬁ(p) < D(p) - Edepth}a (47)

where O.1or € R is the threshold. There are two notable changes compared to the Add condition.
First, the sign of the depth criterion is inverted, reflecting areas where the rays of the observation
would penetrate into the current model, thus indicating that the model geometry can no longer
be present. This also avoids spurious detections where objects are simply occluded rather
than absent. Second, we leverage the high visual fidelity of 3DGS as another conflict signal
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Input Image Rendered Scene Previous Keyframe

Object Disappears

Object Appears

Figure 4.3: Illustration of Add and Remove operations. The input disagrees with the
rendered model (red). For disappearance (top), the conflicting region is projected from previous
keyframes for removal (red), where semantic consistency is enforced through the object mask
(blue). This allows GaME to extract complete objects even under partial observations and
occlusion. When a new object appears on the scene (bottom), new Gaussians are added (red) and
the area of the new object is marked as stale in previous keyframes to prevent the contamination
of the optimization process.

by adding a color term. In contrast to most long-term mapping methods, which rely solely
on 3D information [5, 27, 13, 29, 28, 23|, this allows GaME to also detect changes that are
not geometrically significant, such as a sheet of paper being removed from a table. To ensure
semantic consistency of removed objects, it is insufficient to rely on a single frame, as it may
capture only partial views, and the object cannot be semantically detected since it is already
absent. To address this, GaME renders G,cmove to each covisible keyframe K F' and verifies
whether the color and depth are consistent with the model:

Rf‘iﬂlove = {p € Z2 : Lcolor(p) > Hcolor A Ldepth<p> > Qdepth A a(p> > eopacity}- (48)

Next, each mask in the keyframe is evaluated to determine whether a significant portion intersects
with the conflicting region, marking the masked Gaussians for removal:

k(P) N Riemovel
KF _ G_Z . |mas removel ~, emas 4.9
gremove { ‘ mask(p) ’ fl k ( )

Finally, the joint set, Gremove U Ukp E;Fnove, is removed from the global Gaussian model. This
naturally allows the extraction of individual removed objects from the global model, or deletion
of the Gaussians if only an up-to-date reconstruction is desired. The DSA process is illustrated

in Fig. 4.3.

4.3 Keyframe Management

Managing the keyframes is essential for a system robust to changes, clearly optimizing with
pre-change keyframes leads to ill-posed optimization. Using all the frames from the video stream
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Figure 4.4: Illustration of point reprojection for covisibility Ground-truth color and depth
of current frame (right). Ground-truth color and depth of covisible frame (middle). Reprojected
depth points and occluded reprojection (right). Points are first reprojected from covisible to
current frame and then occluded via the given ground-truth depth.

for optimization is computationally infeasible. The selection is based on whether keyframes
are covisible and contain changes in the scene. A small window W} of keyframes based on
inter-frame covisibility is maintained by reprojection. Effective keyframe management aims to
select non-redundant keyframes that observe the same region while spanning a wide baseline to
enforce stronger multiview constraints. In GaME, keyframes are selected every time a frame
exceeds a translation i ansiation € R or a rotation f.oation € R threshold. This can be replaced
with another keyframe suggestion from an external tracking system. After the training, the
remaining keyframes are used for a refinement. This is common practice and can stabilize the
smaller influence more recent frames would have. While it helps it will be shown it helps with
performance, it is not a must have for GaME to work.

4.3.1 Covisibility

Upon triggering Add or Remove operations by DSA, all covisible keyframes are retrieved by
reprojecting 3D points from the current frame and selecting frames where these points are not
occluded. The reprojection for frame Fj to check if frame F} is covisible is done such that points
from Fj are reprojected into the view of F; and then occluded by the depth mask of F;, to
account for occlusion. This is easily done with the standard pinhole camera pipeline, given
the poses and depth maps of both frames. An example of this can be seen in Fig. 4.4 This
approach differs from conventional 3DGS methods [19, 35|, which determine covisibility based
on the number of Gaussians used to re-render the keyframes. We found projection to be more
reliable than re-rendering in multi-room environments, as Gaussians from different rooms may
still appear visible due to the alpha blending, leading to erroneous covisibility estimates. In the
case of the example in Fig. 4.4, this would also mark most of frames visible which exclusively
cover gaussians behind the wall as covisible. Especially in multi-room environments this can
lead to unnecessary calculations and longer runtimes during the DSA.
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Figure 4.5: Paritally ignored frames. Areas with detected errors are marked with black
pixels. Frame with ignored area, where chair was added (left). Frame with only minor errors
caused by high depth gradients of angles surface (right). While the chair is added, the floor
and background wall is still a valid optimization objective, likewise, as rendered gaussians often
cause depth errors on steep surfaces, the overall frame should still be used for optimization
despite its false positive error detections.

4.3.2 Keyframe Masking

Importantly, in evolving scenes, excluding outdated visual information is crucial, as the scene
may change over time, making previous observations detrimental for the 3DGS optimization
process. However, discarding entire keyframes that observe stale geometry can result in losing
useful information. While some parts of the scene may change, other regions often remain
stable and can provide valuable signals for 3DGS optimization. Specifically, frames could be
only partially outdated, as one object being removed, does not change the rest of the scene.
For example, a removed chair should not render a picture that contains a full view of a room
unusable. Additionally due to the nature of gaussian splatting, it can happen that only minor
insignificant errors in depth and color occur, which are thus masked in the frame but also should
not let the frame get discarded prematurely. Therefore, rather than directly discarding entire
keyframes as stale when only minor parts are outdated, GaME selectively ignores only the stale
areas within them, as seen in Fig. 4.5.

To achieve this, before removing Gremove Or Gt they are rendered onto the keyframe,
and the image regions rendering them are masked out. The same procedure is applied for G.qq.
Formally, the masked region MXF within a keyframe is defined as:

MEE = {p € 7Z* : p € render(Gremove) U render (GEE Y U render(gadd)} (4.10)

where p represents a pixel location within the keyframe, and render(G=) denotes the set of pixels
influenced by the Gaussian set G+ when rendered. During optimization, for all the keyframes
that have ignored areas, GaME optimizes the losses:

A~

Lcolor(Ia I)

>, 1l ¢ A Zﬂlp ¢ M- |1 (p) — 1)1, (4.11)

Laepin(D, D) = Ilp ¢ M"F]-1D(p) — D(p), (4.12)

2, llp éé MEF] Z

Note that compared to (4.2), the structure similarity term is dropped as its convolutional nature
does not interact well with masking.
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4.3.3 Refinement

An added benefit of GaME is that, the masked keyframes can be directly used for further
refinement after the mapping operation, leading to consistent optimization despite changes
occurring throughout the mapping stage. This refinement is essentially implemented the same
just as a normal optimization loop during training just longer. While the original 3DGS does
use densification to add new Gaussians, we currently do not use it. Points are only added in
the add operation as mentioned before. For arbitrary long sequences with many changes this
extra refinement step is a good choice to stabilize the final reconstruction. In our approach,
having the most recent state of the scene accurately reconstructed is essential. Thus, optimizing
over all of the frames after the main training, equalizes the scewed influence early frames have
compared to the latest and desirably most influencial frames.
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Chapter 5

Experiments

MonoGS [19] DG-SLAM [35]  GaME (Ours)

Ground Truth

SplaTAM [11]

Figure 5.1: Qualitative Results. Comparison across different long-term scene changes. (A) A
black office chair appears in the scene; (B) the toy house and chair are moved, the picture is
moved from the table to the shelf; (C) the cutlery on the table is replaced, the painting and
the right chair are moved. GaME is the only method that captures the scene evolution and
preserves high rendering quality.

5.1 Experiments

5.1.1 Datasets

For datasets we selected both synthetic and real datasets containing change. In addition to
that another dataset is selected to assess performance on static scenes. Examples are shown in
Fig. 5.2

We test our method on the Flat [29] dataset, which consists of two RGB-D sequences captured
in a synthetic environment with significant changes occurring between. Another challenging
apsect of this dataset is the room structure. While many datasets only consist of one room,
the Flat dataset represents a two-room scene, making it more challenging. Especially for our
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Figure 5.2: Examples of datasets used for experiments. Flat dataset (left), First room
from Aria-multiagent (middle) and desk from TUM-rgbd (right). For Flat, changes such as
the removed cup and moved chair are visible. In aria the removed picture, removed book and
moved house on the table and moved coffe table on the side are seen. TUM does not contain
any changes.

situation, where covisible frames have to be selected, the multi-room setting poses the challenge
of defining covisibility not on the influence of the gaussians for rendering the current view but
on occlusion based methods as described in Sec. 4.2.

We further evaluate on the Aria [22] dataset to assess performance on real-world data. For
the two selected rooms, there are 5 agents and a testing trajectory each, moving through the
room. We select two recordings from two rooms each that have undergone long-term changes.
To evaluate the change detection, two agents with different states of the room and a testing
trajectory have to be selected, such that the testing trajectory is in the final state of the room.
For The first room, agent 0 and agent 4 are selected for training and agent 4 for testing. For
the second room, agent 4 and agent 0 are selected for training and the test run for testing.

Finally, the TUM-RGBD [30] dataset is used. While this work aims to address long-term
changes in scenes its important to validate if the method can perform on different static scenes.
We selected scenes desk, zyz and office, following the protocol of [19]. They depict everyday
scenarios such as a cluttered office.

5.1.2 Evaluation Metrics

To assess rendering quality, we compute PSNR, SSIM [32] and LPIPS [40]. Rendering metrics
on all the datasets is evaluated by rendering full-resolution images along the ground-truth
trajectory. We assess the depth error using the L1 norm in centimeters.

Peak Signal-to-Noise Ratio (PSNR) originates from signal processing in information
theory, where it comparing the quality of the recieved signal against the original. It is based
on the mean squared error (MSE) between the recieved and original signal and measured in
decibels (dB). In our case the signals are the images, rendered from the Gaussian model. The
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PSNR is defined as

MAX?
where MAX denotes the maximum possible value for a pixel (255 for 8-bit format), and MSE

for images I,K is defined as

._.
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MSE(1, K) ) — K(i, ). (5.2)
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A higher PSNR indicates better reconstuction quality.

Structural Similarity Index Measure (SSIM) is a metric designed to mimic the human
perception of image quality. Opposed to traditional metrix like PSNR or MSE, SSIM models
similarity based on structural information, lighting and contrast. For this reason, it is a good
complementary addition next to PSNR. Given two image patches x and y, SSIM is defined as

(2papty + C1)(204y + Co)
(L2 4 p2 + C) (02 402 + Cy)’

(

SSIM(z,y) = (5.3)
where p, and p,, are the mean intensities of x and y, o2 and 033 are the variances, and o, is the
covariance between them. The constant terms C; and Cy are used to stabilize the division and
are defined as:

C, = (K|L)?, Cy=(KyL)? (5.4)

where L is the dynamic range of pixel values (255 for 8-bit format), and K; = 0.01, Ky = 0.03
are small constants. The values of SSIM range from -1 to 1, where 1 would suggest perfect
structural similarity. To obtain a single score for the whole image, the score is calculated for all
patches and averaged.

Learned Perceptual Image Patch Similarity (LPIPS) is a similarity measure designed
to also better align with human perception of image quality, specifically for natural images.
Unlike PSNR and SSIM, which are defined by hand-crafted formulas based on low-level statistics,
LPIPS utilizes deep neural networks trained to grasp perceptual similarity. LPIPS works by first
extracting image features using a pre-trained convolutional neural network and then computing
distances between those features accross multiple layers. The distance is a weighted L2 norm
over the corresponding image features. Formally, given two image patches x and y, LPIPS
distance is defined as

1 .
LPIPS(z.y) = 3 wr- g > ’ o
l h,w

2

- (5.5)

hyw) = f (b, w)

where flx and fly are the feature activations at layer [ for z and y, and w; are learned weights
to scale the influence of each layer. H; and W, are the height and width of the feature maps
in layer [. Intuitively, since it is calculated by distance, lower LPIPS values represent higher
perception similarity. LPIPS has been shown to correlate better with visual similarity than
conventional metrics, thus making it specifically useful for tasks involving generative model or
in our case image synthesis.

5.1.3 Baselines

We compare GaME with state-of-the-art 3DGS online reconstruction systems MonoGS [19] and
SplaTAM [11]. While those two also do tracking, only the mapping part will be evaluated using
the gt poses provided by the dataset. We compare with DG-SLAM [17], a recent dynamic 3DGS
method, to assess the ability of dynamic 3DGS SLAM to handle evolving scenes.
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Methods PSNR [dB]+  SSIM 1 LPIPS |  Depth L1 [cm] |

SplaTAM [11]  16.15 / 13.18  0.471 / 0.301  0.648 / 0.729 238.4 / 308.2
MonoGS [19] 21.24 /2133  0.771 / 0.769  0.398 / 0.396 30.95 / 29.91
DG-SLAM [17] 13.72 /13.70  0.586 / 0.603  0.737 / 0.739 73.76 | 73.90
GaME (Ours) [123047//24:7910:880" /10:89910:266" /10:227 1559 /16163

Table 5.1: Rendering performance on the Flat dataset. GaME shows superior performance
in both color and depth rendering. Cells show metrics for input / novel views.

5.1.4 Evolving Scene Evaluation Protocol

The goal of mapping evolving scenes is to render only the most up-to-date reconstruction without
prior information on when the scene was changed. In addition, the system should be able to
accurately render both the views it observed (input views) and unobserved frames (novel views).
To achieve this capability, we merge RGB-D captures from every scene in the Aria and Flat
datasets into a single continuous sequence to recreate this real-world behavior. For rendering
evaluation, every 10th frame from each scene’s last RGB-D sequence is held out for novel view
synthesis testing. The remaining 90% of the frames are used to evaluate input view synthesis.
To isolate the mapping performance, ground-truth poses are used for GaME and all baselines.

5.2 Evolving Scene Mapping Results

We run GaME on the Flat and Aria datasets to evaluate rendering quality in evolving scenes,
shown in Tabs. 5.1 and 5.2. The Flat dataset is designed to test mapping under scene changes
and includes more substantial long-term dynamics. We note that all losses are computed over
complete images, where changed areas typically occupy a smaller part. Nonetheless, we observe
notable differences in rendering performance on both datasets, where GaME is the only method
that accurately adapts the reconstruction to even subtle scene changes without compromising
rendering quality. This granularity is shown in qualitative results in Fig. 5.1. Beyond high
rendering quality, GaME is able to accurately resolve changes also for challenging cases such as
small cutlery on the table and flat paintings.

5.3 Ablation Studies

Although GaME performs better using DSA, it is important to thoroughly validate the approach.
We conduct ablation studies to assess key design choices and analyze the reconstruction perfor-
mance of both evolving and static scenes. Additional experiments on runtime and robustness to
noisy input poses are also done.

5.3.1 Add and Remove operations ablation for DSA

We ablate the components of DSA in Tab. 5.3, showing that its presence significantly improves
performance. While differences between individual DSA variants are less pronounced in final
rendering quality, due to keyframe optimization correcting finer detail, combining both operations
consistently yields the best performance and fastest adaptation. While the adding operation
is more simple, it is less trivial that the removal operation works as intended. To be more
confident, it can be observed how the removal operation works in practice. In ?? the removal of
a bed in another room is illustrated.
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Methods Scene PSNR [dB] 1 SSIM 1 LPIPS | Depth L1 [cm] |
SplaTAM [11] room{ 1.80 / 16.75 0.780 / 0.447 0.239 / 0.444 412 / 17.79
rooml  22.94 / 17.90 0.810 / 0.543 0.219 / 0.440 2.84 / 15.9
Avg 22.37 / 17.33 0.795 / 0.495 0.229 / 0.442 3.48 / 16.8
MonoGS [19] room0 ~ 25.28 / 25.19 0.781 / 0.779 0.277 / 0.273 5.15 / 5.09
rooml  23.12 /23.02  0.844 /0.842  0.236 / 0.241 4.99 / 5.01
Avg 2420 /2411 0813 /0811  0.257 / 0.257 5.07 / 5.05
DG-SLAM [17] room0O  15.78 / 15.63 0.578 / 0.580 0.761 / 0.763 67.60 / 69.05
rooml  12.62 / 12.44 0.651 / 0.643 0.702 / 0.708 55.47 / 57.03
Avg 1420 /1404  0.615/0.612 0732 /0.736  61.54 / 63.04
GaME (Ours) room0 2887 / 28:94 0.934 7/ 0:935 0:166 / 0.166 2.3 /2.2
rooml 30.83 / 30.54 0.961 / 0.958 0.107 / 0.114 1.8 /1.9
Avg. 29.85 / 29.74 0.948 / 0.947 0.137 / 0.140 2.05 / 2.05

Table 5.2: Rendering performance on the Aria dataset. GaME shows superior performance

in both color and depth rendering. Cells show metrics for input / novel views.

right)

= 7 'ﬁ“ﬁ

Figure 5.3: Demonstration of removal process First a frame (top right) is observed and
compared to the current view of the model (top middle). After the adding operation, the removal
operation is triggered and finds several collections of gaussians getting overlapped in covisible
frames (bottom half). Notice, how unseen gaussians of the bed get marked that are occluded by
the corner of the wall. This is the partial obervability property we wanted to achieve. Finally,
those gaussians are removed and the model is ready for the next frame in the sequence (top
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Method PSNR [dB]+  SSIM ¢ LPIPS |  Depth L1 [cm] |

No DSA 21.28 / 20.75  0.846 / 0.838  0.265 / 0.289 44.6 / 42.9
Add 24.55 / 23.37 | 0.900 / 0.884 0.229 / 0.268 17.9 /173
Remove 24.31 /2314  0.896 / 0.880  0.232 / 0.267 17.6 / 16.3

Add and Remove (Ours) | 24.76 / 23.47 0.898 / 0.881  0.228 / 0.267 16.9 / 15.8

Table 5.3: Dynamic Scene Adaptation (DSA) ablation in the Flat dataset. Combination
of Add and Remove operations give the best performance. Cells show metrics for input / novel
vViews.

Method PSNR [dB] 1 SSIM 4+ LPIPS |  Depth L1 [cm] |
No KF Filtering 2229 /2151  0.853 / 0.853  0.254 / 0.280 30.5 / 29.5
Full KF Filtering 17.63 / 16.58  0.675 / 0.614  0.500 / 0.525 215.0 / 244.1

Partial KF Filtering (Ours) [24:767/23:47 0:898"/ 0:881 0:229 /0:267 " '16:9 /'15.8

Table 5.4: Keyframe management ablation on Flat dataset. Retaining keyframes is
essential to constrain the background. However, to avoid artifacts, conflicting regions must be
accurately filtered.

5.3.2 Importance of Keyframe Management

In Tab. 5.4, we compare keeping all keyframes against ignoring stale keyframes and ignoring
only stale regions. The naive approach to dealing with scene changes in 3DGS is to completely
remove keyframes from optimization when any change has been detected. Using the naive
approach for evolving scenes of fully discarding conflicting keyframes can leave parts of the scene
severely under-constrained, leading to the worst outcome. It is also important to check whether
keyframe filtering achieves any improvement at all. We tested not filtering out any keyframes,
regardless of changes being detected. Not filtering out any keyframes achieves clear background
rendering. It is important to note that the background accounts for the majority of pixels.
These pixels dominate the losses. Thus, the overall mapping does not completely fail. However,
it inevitably results in artifacts and inconsistencies for changed regions, as seen in Fig. 5.4.0ur
proposed approach is to solely remove keyframes which are sufficiently flawed. Specifically, this
partial keyframe filtering achieves sufficient constraints for the Gaussian optimization while
removing conflicting regions. Since partial keyframe filtering resulted in the highest performance
in this ablation, this highlights the importance of retaining information about the background
and resolving conflicts in keyframes for 3DGS optimization.

While the quantitative results hint at the differences in performance, visually it is very clear
what effect the keyframe management has in Fig. 5.4. Although DSA is used for all 3 ablations,
having no keyframe filtering will ultimately lead to optimization conflicts, most notable for half
chairs or outlines of the picture moved on the wall. While changes are still correctly managed,
fully discarding frames as soon as they contain conflicts severely deteriorates the performance.
Finally, using both keyframe management with partial keyframe filtering and DSA will yield
the best result.

5.3.3 Static scene reconstruction

While our method is specifically designed to reconstruct evolving scenes, it should not lose
the ability to reconstruct static scenes. To verify this, we trained on differing scenes of the
TUM-RGBD dataset, which does not contain any changes. Results on the TUM-RGBD dataset
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Figure 5.4: Qualitative comparison for keyframe management ablation. Rendered frame
for no keyframe Filtering (left), full keyframe Filtering (middle) and partial keyframe filtering
(right).

Method desk  xyz office Average

SplaTAM [11] [ 20.92 F210030 21.61 21019
MonoGS [19]  17.41 1509 19.93  17.48
GaME (Ours) 200947 20.54 121967 21.15

Table 5.5: Rendering performance on TUM-RGBD dataset. GaME performs on par
with state-of-the art mapping systems for static scenes. PSNR [dB|{ shown for input views.

shown in Tab. 5.5 show that GaME performs on par with state-of-the-art systems. This suggests
that the introduced DSA and keyframe management are robust to noise and false positives in
model updates and masking, which could deteriorate performance.

5.3.4 GaME is an online mapping system

Our approach is of an incremental nature with partial optimization performed on every new
keyframe. Optionally, our approach lends itself to further final refinement. To test how relevant
the refinement is for overall performance, we do an ablation with and without refinement after
the main training. Both options are shown in Tab. 5.6. While refinement can potentially improve
the final rendering quality, we note that the model is already well converged after incremental
processing.

Method PSNR [dB]+  SSIM 1 LPIPS| Depth L1 [cm] |

No Refinement 24.48 / 23.30 0.899 / 0.883 0.231 / 0.266 17.00 / 15.90
With Refinement 24.76 / 23.47 0.898 / 0.881 0.229 / 0.267 16.90 / 15.80

Table 5.6: Final refinement ablation on Flat dataset. While refinement can potentially
improve the final rendering quality, GaME already converges well during incremental processing.

5.3.5 Noisy poses

We evaluate the camera poses on the Aria dataset with an external SLAM [19] system and use
the estimated poses and keyframes instead of ground truth in Tab. 5.7. GaME is robust even
when the pose estimation is not precise, exhibiting only a marginal performance drop under
noisy pose conditions.
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Camera Poses PSNR [dB] 71 SSIM 1 LPIPS | Depth L1 [cm] |

Ground-truth ~ 26.63 / 26.71  0.920 / 0.920 0.179 / 0.180 2.4 /2.4
Estimated 24.83 / 24.93  0.873 / 0.876 0.234 / 0.232 3.6 /3.6

Table 5.7: Usage of noisy poses on Aria room0. GaME is robust to camera pose noise,
exhibiting only a slight performance drop when using noisy poses instead of ground-truth.
Camera poses and keyframes are estimated with an off-the-shelf reconstruction system [19].

5.3.6 Run-time Analysis

We compare the mapping runtime of our method with other state-of-the-art Gaussian-based
systems in Tab. 5.8. Scenes with changing geometry naturally slow the mapping process,
as existing methods struggle with seeding new geometry and optimizing under conflicting
observations. In contrast, GaME is designed to explicitly handle such dynamic scene adaptation
while being comparably efficient to the state-of-the-art mapping systems.

Metric SplaTAM [11] MonoGS [19] DG-SLAM [35] GaME (Ours)
FPS?t 0.129 4.212 0.346 0.165

Table 5.8: Runtime Analysis on Flat dataset. Evolving scenes significantly slow down the
mapping process. While GaME supports scene adaptation mechanisms, it performs comparably
with state-of-the-art mapping systems. The frame per second is calculated by dividing the time

spent on mapping by the total number of processed frames. All metrics are profiled using an
NVIDIA RTX 3090 GPU.
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Chapter 6

Limitations

While GaME currently demonstrates robust rendering performance on evolving long-term
dynamic scenes, several notable limitations exist. First, it does not yet handle short-term
dynamic objects, which would result in inefficient addition and removal. Extending the dynamic
scene adaptation mechanism to consider both dynamics is an exciting future direction. Second,
we primarily study mapping with external pose tracking. Although sparse odometry systems
can reject many changes as outliers 2], change-aware pose refinement and integration of a
dedicated tracking mechanism is an exciting future direction that could improve accuracy. Third,
while GaME is an online algorithm that can process sequences captured in evolving scenes,
the current implementation has not been optimized for performance, which limits real-time
deployment. Consistently updating the 3DGS map through incremental segmentation, rather
than iterating over segmentation masks, could significantly speed up the approach. Finally,
DSA is currently performed only per incoming keyframe. This has the advantage of not storing
semantic information in the 3DGS model and comes with some inherent robustness through the
multi-view optimization process. However, individual semantic masks can be noisy or missing,
where a delayed decision or global optimization could improve performance by considering more
semantic observations.
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Chapter 7

Conclusions

7.1 Conclusions

We presented GaME, the first online mapping system for evolving scenes with novel view
synthesis capabilities. GaME utilizes novel dynamic scene adaptation operations to detect and
correct conflicts in the incrementally built 3DGS model. Our keyframe management method
furthermore appropriately ignores stale areas in keyframes, retaining useful information while
correcting for changed regions, resulting in a well-conditioned 3DGS optimization process. We
thoroughly evaluate our methods on synthetic and real-world datasets, demonstrating 90-+% in
depth and 20+% color rendering performance and artifact-free novel view synthesis in long-term
dynamic evolving scenes.
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Chapter 8

Future Work

While this work addresses-long-term changes of the scene, it is unclear what impact short-term
dynamics might have in the scene. Although it was not tested during experiments, since it was
not the goal of this work, since the evaluation was done with datasets that do not contain short
term dynamics. Datasets that could be used to evaluate this short-term change capability, could
be both the TUM RGB-D [30] dataset, as it also contains scenes with dynamic components as
well as BONN RGB-D [21] or any other RGB-D dataset, as long it contains moving parts such
as human interaction with the environment on camera. It would be the logical next step to also
address ignoring short-term dynamics and add it to the DSA module to make it a powerful
solution for Gaussian Mapping that can handle short- and long-term changes. This can be
addressed by building on works like DG-SLAM and Wildgs-slam [35, 41|, which, as outlined
in the Introduction chapter, tackle specifically this problem. As GaME is already using both
depth data and panoptic-segmentation input from an external model, it would not impose a
drastic pipeline refactor, rather an addition.

Since GT poses are rarely available in real-world applications, an important addition to this
framework would be a built in tracking system, as it has been shown that the change detection
would work with estimated poses. This would greatly improve usability of this method.
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Chapter 9

Appendix

Note on Baselines Wild-GS [41] cannot be run with ground-truth poses, as it relies on an
off-the-shelf depth estimator that may be inconsistent with them. At the same time, it fails
to track the camera poses on the Aria and Flat datasets. For this reason, we were not able to
compare our method with it.

Implementation Details. In Tab. 9.1 we provide the hyperparameters used in our experiments.

Dataset )\color )\depth edepth eopacity ecolor emask €depth erotation etranslation eignore

Flat [20] 1.0 1.0 40 03 01 04 20 50 5.0 0.9
Aria [22] 1.0 1.0 40 03 03 04 40 25 0.5 0.2

Table 9.1: Hyperparameters for Flat [29] and Aria [22]| datasets.
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